28 research outputs found

    Energy and path aware clustering algorithm (EPAC) for mobile ad hoc networks

    Get PDF
    Node clustering is a technique that mitigates the change in topology in Ad hoc communication. It stabilizes the end to end communication path and maximizes the path life time. In SWARM communication, each cluster is assigned an objective and expected to complete it in the available resources. Most of the algorithms previously designed assume that the assignment of tasks can be done in any arbitrary manner and does not depend on the energy resources. In this work, we have emphasized that the number of nodes in a cluster is fundamentally related to the energy requirement of the objective. With the help of this new algorithm, we minimize energy consumption in a cluster by improving the mechanism for selecting objective, depending upon the amount of energy present at the nodes of that cluster

    A performance simulation tool for the analysis of data gathering in both terrestrial and underwater sensor networks

    Get PDF
    Wireless sensor networks (WSNs) have greatly contributed to human-associated technologies. The deployment of WSNs has transcended several paradigms. Two of the most significant features of WSNs are the intensity of deployment and the criticalness of the applications that they govern. The tradeoff between volume and cost requires justified investments for evaluating the multitudes of hardware and complementary software options. In underwater sensor networks (USNs), testing any technique is not only costly but also difficult in terms of full deployment. Therefore, evaluation prior to the actual procurement and setup of a WSN and USN is an extremely important step. The spectrum of performance analysis tools encompassing the test-bed, analysis, and simulation has been able to provide the prerequisites that these evaluations require. Simulations have proven to be an extensively used tool for analysis in the computer network field. A number of simulation tools have been developed for wired/wireless radio networks. However, each simulation tool has several restrictions when extended to the analysis of WSNs. These restrictions are largely attributed to the unique nature of each WSN within a designated area of research. In addition, these tools cannot be used for underwater environments with an acoustic communication medium, because there is a wide range of differences between radio and acoustic communications. The primary purpose of this paper is to present, propose, and develop a discrete event simulation designed specifically for mobile data gathering in WSNs. In addition, this simulator has the ability to simulate 2-D USNs. This simulator has been tailored to cater to both mobile and static data gathering techniques for both topologies, which are either dense or light. The results obtained using this simulator have shown an evolving efficient simulator for both WSNs and USNs. The developed simulator has been extensively tested in terms of its validity and scope of governance

    Academic performance in adolescent students: The role of parenting styles and socio-demographic factors – a cross sectional study from Peshawar, Pakistan

    Get PDF
    Academic performance is among the several components of academic success. Many factors, including socioeconomic status, student temperament and motivation, peer, and parental support influence academic performance. Our study aims to investigate the determinants of academic performance with emphasis on the role of parental styles in adolescent students in Peshawar, Pakistan. A total of 456 students from 4 public and 4 private schools were interviewed. Academic performance was assessed based on self-reported grades in the latest internal examinations. Parenting styles were assessed through the administration of the Parental Bonding Instrument (PBI). Regression analysis was conducted to assess the influence of socio-demographic factors and parenting styles on academic performance. Factors associated with and differences between care and overprotection scores of fathers and mothers were analyzed. Higher socio-economic status, father\u27s education level, and higher care scores were independently associated with better academic performance in adolescent students. Affectionless control was the most common parenting style for fathers and mothers. When adapted by the father, it was also the only parenting style independently improving academic performance. Overall, mean care scores were higher for mothers and mean overprotection scores were higher for fathers. Parenting workshops and school activities emphasizing the involvement of mothers and fathers in the parenting of adolescent students might have a positive influence on their academic performance. Affectionless control may be associated with improved academics but the emotional and psychosocial effects of this style of parenting need to be investigated before recommendations are made

    An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks

    Get PDF
    In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes

    Exploring UK medical school differences: the MedDifs study of selection, teaching, student and F1 perceptions, postgraduate outcomes and fitness to practise.

    Get PDF
    BACKGROUND: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. METHOD: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g. PBL schools, spend per student, staff-student ratio), selection measures (e.g. entry grades), teaching and assessment (e.g. traditional vs PBL, specialty teaching, self-regulated learning), student satisfaction, Foundation selection scores, Foundation satisfaction, postgraduate examination performance and fitness to practise (postgraduate progression, GMC sanctions). Six specialties (General Practice, Psychiatry, Anaesthetics, Obstetrics and Gynaecology, Internal Medicine, Surgery) were examined in more detail. RESULTS: Medical school differences are stable across time (median alpha = 0.835). The 50 measures were highly correlated, 395 (32.2%) of 1225 correlations being significant with p < 0.05, and 201 (16.4%) reached a Tukey-adjusted criterion of p < 0.0025. Problem-based learning (PBL) schools differ on many measures, including lower performance on postgraduate assessments. While these are in part explained by lower entry grades, a surprising finding is that schools such as PBL schools which reported greater student satisfaction with feedback also showed lower performance at postgraduate examinations. More medical school teaching of psychiatry, surgery and anaesthetics did not result in more specialist trainees. Schools that taught more general practice did have more graduates entering GP training, but those graduates performed less well in MRCGP examinations, the negative correlation resulting from numbers of GP trainees and exam outcomes being affected both by non-traditional teaching and by greater historical production of GPs. Postgraduate exam outcomes were also higher in schools with more self-regulated learning, but lower in larger medical schools. A path model for 29 measures found a complex causal nexus, most measures causing or being caused by other measures. Postgraduate exam performance was influenced by earlier attainment, at entry to Foundation and entry to medical school (the so-called academic backbone), and by self-regulated learning. Foundation measures of satisfaction, including preparedness, had no subsequent influence on outcomes. Fitness to practise issues were more frequent in schools producing more male graduates and more GPs. CONCLUSIONS: Medical schools differ in large numbers of ways that are causally interconnected. Differences between schools in postgraduate examination performance, training problems and GMC sanctions have important implications for the quality of patient care and patient safety

    The Analysis of Teaching of Medical Schools (AToMS) survey: an analysis of 47,258 timetabled teaching events in 25 UK medical schools relating to timing, duration, teaching formats, teaching content, and problem-based learning.

    Get PDF
    BACKGROUND: What subjects UK medical schools teach, what ways they teach subjects, and how much they teach those subjects is unclear. Whether teaching differences matter is a separate, important question. This study provides a detailed picture of timetabled undergraduate teaching activity at 25 UK medical schools, particularly in relation to problem-based learning (PBL). METHOD: The Analysis of Teaching of Medical Schools (AToMS) survey used detailed timetables provided by 25 schools with standard 5-year courses. Timetabled teaching events were coded in terms of course year, duration, teaching format, and teaching content. Ten schools used PBL. Teaching times from timetables were validated against two other studies that had assessed GP teaching and lecture, seminar, and tutorial times. RESULTS: A total of 47,258 timetabled teaching events in the academic year 2014/2015 were analysed, including SSCs (student-selected components) and elective studies. A typical UK medical student receives 3960 timetabled hours of teaching during their 5-year course. There was a clear difference between the initial 2 years which mostly contained basic medical science content and the later 3 years which mostly consisted of clinical teaching, although some clinical teaching occurs in the first 2 years. Medical schools differed in duration, format, and content of teaching. Two main factors underlay most of the variation between schools, Traditional vs PBL teaching and Structured vs Unstructured teaching. A curriculum map comparing medical schools was constructed using those factors. PBL schools differed on a number of measures, having more PBL teaching time, fewer lectures, more GP teaching, less surgery, less formal teaching of basic science, and more sessions with unspecified content. DISCUSSION: UK medical schools differ in both format and content of teaching. PBL and non-PBL schools clearly differ, albeit with substantial variation within groups, and overlap in the middle. The important question of whether differences in teaching matter in terms of outcomes is analysed in a companion study (MedDifs) which examines how teaching differences relate to university infrastructure, entry requirements, student perceptions, and outcomes in Foundation Programme and postgraduate training

    SVM Based Event Detection and Identification: Exploiting Temporal Attribute Correlations Using SensGru

    No full text
    In the context of anomaly detection in cyber physical systems (CPS), spatiotemporal correlations are crucial for high detection rate. This work presents a new quarter sphere support vector machine (QS-SVM) formulation based on the novel concept of attribute correlations. Our event detection approach, SensGru, groups multiple sensors on a single node and thus eliminates communication between sensor nodes without compromising the advantages of spatial correlation. It makes use of temporal-attribute (TA) correlations and is thus a TA-QS-SVM formulation. We show analytically that SensGru (or interchangeably TA-QS-SVM) results in a reduced node density and gives the same event detection performance as more dense Spatiotemporal-Attribute Quarter-Sphere SVM (STA-QS-SVM) formulation which exploits both spatiotemporal and attribute correlations. Moreover, this paper develops theoretical bounds on the internode distance, the optimal number of sensors, and the sensing range with SensGru so that the performance difference with SensGru and STA-QS-SVM is negligibly small. Both schemes achieve event detection rates as high as 100% and an extremely low false positive rate

    A Method for Distributed Pipeline Burst and Leakage Detection in Wireless Sensor Networks Using Transform Analysis

    No full text
    Bursts and leakages have turned out to be one of the most frequent malfunctions in liquid pipeline distribution systems. In recent years, the issue has gained a lot of attention in research community due to associated financial costs, environmental hazards, and safety considerations. Wireless sensor network (WSN) based leakage detection and localization can provide an exceptional level of operational efficiency, safety assurance, and real-time parametric view of the entire pipeline network. In this paper, we propose a transient pressure wave based technique coupled with wavelet analysis to achieve reliable detection and localization of abrupt bursts and leakages. The presented technique uses the information carried in the transient pressure signal. A specific pattern is induced on the pressure traces within the pipeline due to leak; we use wavelet analysis to detect these local singularities. The proposed algorithm is distributed in nature and run on low power sensor nodes. The algorithm is deployed in field on a custom pipeline test bed and performance results are documented for various testing scenarios. A comparison of proposed wavelet technique with other widely used methods has been carried out. The technique provides more than 90% accuracy in a number of deployment scenarios for high noise generating long pipeline networks
    corecore